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(U) A Deep Learning Algorithm for the Detection of Image 
Quality Indicators 

(U) Abstract:  In this paper we describe a deep learning algorithm for the 
detection of image quality indicators. Given large data sets, being able to 
retrieve radiographs with certain desirable characteristics can prove very 
useful when auditing a production facility.  

(U) Research Innovation and Objective(s):  Transfer Learning is 
demonstrated in the context of Industrial Radiography.  This is the first time 
machine learning has been used successfully in the context of industrial 
radiography, here at CCDC Armaments Center.  

(U) Impacts on Warfighter Mission:  Auditing production is a central 
theme of our mission at the Radiographic Laboratory. Being able to expedite 
the process with high accuracy ensures the best quality munitions are 
delivered to the warfighter.  

(U) Keywords:  Industrial Radiography, Supervised Learning, AlexNet, 
Transfer Learning, Rectified Linear Unity (ReLU), Machine Learning, 
Deep Learning, Convolutional Neural Network (CNN),  MATLAB®, IQI, 
M1 Shell 
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1. (U) Introduction 

(U) In this paper we demonstrate the use of 
advanced machine learning algorithms for the 
detection of image quality indicators, IQI.  In 
recent years, there has been a lot of progress in 
using machine learning algorithms in the context 
of computer vision tasks. Machine Learning is 
defined as the use of algorithms to perform a 
specific task without using explicit instructions.  
[1] In contrast to this, there is what I call classical 
automatic defect recognition or classical ADR.  In 
classical ADR, a set of explicit computer 
instructions, often including hard coded 
thresholds, is used to make decisions. Classical 
ADR has many flaws. Inherently, classical ADR 
posseses lack of versatility across systems. 
Machine learning algorithms have the potential 
to increase versatility.  This paper will outline the 
detection of image quality indictators, IQI’s, in a 
radiograph using a machine learning framework.  

(U) There are two learning paradigms in machine 
learning. Supervised learning is a scheme where 
a human first separates the data into categories. 
This is called the training data set. The computer 
then “learns”, developing optimal parameters 
based on the categorical data given. After the 
computer is done optimizing over variables, the 
training phase, the algorithm can be tested on 

data that is unlabelled. This unlabelled dataset is 
called a validation set.  The other learning 
paradigm is called unsupervised learning and will 
not be explored further here. [2] 

(U) There are many different types of machine 
learning algorithms. Fundamentally, a 
radiograph is a matrix of grey values.  Imagine we 
have a dataset of images, where each image 
contains only two pixels.  Further assume these 
pictures are either a dog or a cat.  The objective is 
to solve the classification problem, wherby the 
computer will label each image as dog or cat.  

(U) The computer takes these two pixels as inputs 
and feeds them into a machine learning 
algorithm.  With enough data, a decision 
boundary in ℝ2, the familiar euclidean space, can 
be derived. Note that the shape of the decision 
boundary can be highly nonlinear, as shown in 
figure 1 below.   

(U) Advanced machine learning algorithms have 
been very successful at deriving these highly 
nonlinear decision boundaries.  Fundamentally, 
this is why machine learning has gained so much 
popularity in recent years over the more familiar 
techniques of statistical regression. It is 
important to keep in mind that the ideas behind 
statistical regression, form the core of all machine 
learning algorithms.  In fact, one can state that 
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statistical regression is a special case of machine 
learning.  

 

Figure 1. A plot of two pixels with a decision 
boundary shown in purple. The minus signs 
indicate this datapoint represented a cat, while 
the plus signs represented a dog.  [9] 

(U) For the more practical applications that 
follow, visualizing these decision boundaries is 
impossible. For most computer vision tasks, 
hundreds of pixels are used as inputs and thus the 
decision boundary exists in a high dimensional 
space.  

(U) For computer vision tasks, successes have 
come from learning models called artificial 
neural networks (ANN).  Artificial neural 
networks are mathematical models that are based 
off of biological neural networks. The basic unit 
of the ANN, is the neuron. Consider the network 
architecture depicted in figure 2 below.  

 

 

 

 

 

 

 

 

Figure 2. A simple schematic of a neural network 
with three layers: one input layer, one hidden 
layer, and the output layer.  

(U) The neural network depicted in figure 1 shows 
an input layer with three input variables. For 
image processing tasks, the input layer will 
contain the greylevel values of each pixel.  The 
next layer is what is called the “hidden” layer. 
This hidden layer, takes the inputs and does some 

mathematical operation on them.  Lastly, the 
final layer computes a decision.  For the 
classification problem, this is usually a simple 
vector containing zero’s and a one. For example, 
with our earlier example of detecting dogs and 
cats, our output layer will be a two dimensional 
vector representing the two different categories. 
A vector of [0, 1] would represent a cat while a 
vector of [1, 0] would represent a dog.  In column 
notation, this would be represented by, 

 (
𝑑𝑜𝑔
𝑐𝑎𝑡

) = (
0
1
). [9] 

(U) We now turn to a more mathematical 
treatment of Neural Networks. Let us 
demonstrate the AND logic gate in the context of 
a simple neural network.  Consider an input layer, 
with two variables, 𝑥1 and 𝑥2.  These two variables 
can assume one of two values, 0 or 1.  The neural 
architecture is shown in figure 3 below. Consider 
the following function, for the output, h(z).  [9] 

ℎ𝜃(𝑧) = 𝑔(𝑧) = 𝑔(−30 + 20𝑥1 + 20𝑥2) 

 

 

 

 

 

 

 

 

 

Figure 3. Neural Network for the AND logic [9] 

(U) We now calculate all values of this neural 
network and tabulate in the table below. [9] 

𝑥1 𝑥2 z h(z) 

0 0 -30 0 

0 1 -10 0 

1 0 -10 0 

1 1 10 1 

𝑥1 

𝑥1 

𝑥2 

𝑥3 

𝑥1 

1 

𝑥1 

𝑥2 

h(x) 

-30 

20 

20 
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(U) We see that the above example has  recovered 
the familiar AND logic gate. An important 
observation is the fact that this function seems to 
output zero for all negative values, but one for 
positive values. In the example above, the 
function g(z) was rather arbitrary. We now turn 
to the question of how to train a neural network 
to learn the function, g(z).  [9] 

(U) As we saw in the neural network for the AND 
logic gate, the output was based on a linear 
combination of the input variables. This is also 
true of a general neural network. In the general 
neural network depicted in figure (4), each line 
segement represents a different weight. Each 
subsequent layer of the network is computed 
based on the weights and the results of the 
previous layer.  

 

 

 

 

 

 

 

 

Figure 4.  A neural network, with weights and 
bias.   

(U) We update the weights and biases of the 
neurons on the basis of the error of the output. 
This is known in the literature as 
backpropogation.  One can show that the non-
linearity of the decision boundary stems from the 
presence of activation functions. It turns out that 
a neural network without activation functions are 
essentially, linear regression models. The 
activation function performs the non-linear 
transformation of the input, making it possible to 
learn more complex decision boundaries. An 
activation function simply determines if a neuron 
is on or off.  

(U) Research has shown that rectified linear units 
(ReLU) have been very  successful in the context 
of computer vision. [4] These are the activation 

functions that will be used in this paper. The 
mathematical expression for ReLU is,  

𝑓(𝑥) = max(0, 𝑥) 

where x is the input to a neuron.  A plot of the 
ReLU activation function is shown in figure 5.  

 

 

Figure 5. Graph of ReLU activation function in 
blue. [4] 

(U) We now explain how a neural network learns 
over the training dataset.  Similar to logistic 
regression, the objective is to find the minimum 
of a cost function. Recall from calculus, that to 
find the minimum of a function, one must find 
the derivative of the function, or the gradient and 
set it equal to zero.  The actual formula of the cost 
function is omitted, as it is not instructive for our 
purposes.  

(U) To train a neural network, one first randomly 
initializes the weights.  One then implements 
forward propogation to get the output for an 
arbitrary input.  Next, the value of the cost 
function is obtained. After this, one implements 
the backpropogation algorithm to compute the 
gradient of the cost function. Lastly, one uses 
gradient descent or other optimization 
algorithms to try to minimize the cost function.   

(U) There has been a lot of success in using 
convolutional neural networks, or CNN, towards 
computer vision problems. [3] Images present a 
unique challenge when designing a neural 
network.  When performing computer vision 
tasks the spatial correlation of the pixels becomes 
important.   

(U) I will briefly explain the key components of a 
CNN and refer the reader to any textbook on 
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machine learning for a more mathematical 
treatment. Spatial Pixel correlations are 
measured by convolving image patches with a 
filter. An image patch is simply a submatrix, 3x3 
or 5x5, of pixels of the original image. In classical 
image processing, image filters can be used for all 
sorts of tasks such as edge detection, or 
sharpening, to name a few. In the context of 
machine learning, these filters are learned, based 
on the task at hand. With each iteration, the 
computer updates the filter to recognize features 
of interest.  In our application, the filters will 
recognize what an IQI looks like in the spatial 
domain (matrix of pixel values).  

(U) After the filter has been convolved with all 
image patches, a feature map is generated. An 
activation function is then applied to each feature 
map which decides if a given feature is present or 
not. You might also come across the idea of a 
“pooling layer” in the literature. A pooling layer 
extracts the largest value from a feature map in 
order to use these as inputs in subsequent layers.  

(U) The problem discussed in this paper is an 
image classification problem. We have two 
categories. For a given radiograph, two choices 
are possible. Either an IQI is present, or an IQI is 
not present. It will be the computer’s job to label 
each radiograph.  

(U) In this paper we demonstrate transfer 
learning on M1 shells using AlexNet, a 
convolutional neural network designed by Alex 
Krizhevsky.  Transfer learning is the process 
whereby a trained learning algorithm is applied 
to a different but related problem.  Alex 
Krizhevsky’s paper's primary result was that the 
depth of the model was essential for its high 
performance, which was computationally 
expensive, but made feasible due to the 
utilization of graphics processing units (GPUs) 
during training. [5]  AlexNet is trained on more 
than a million images and can classify images into 
1000 object categories. The network has an input 
image size of 227x227 pixels. More on the image 
input will be described below.  

(U) It is my hope that this paper outlines a 
pipeline for future research and deployment of 
machine learning algorithms across CCDC 
armaments center.   

2. (U) Method 

(U) The first step was processing our radiographs 
to be of acceptable size and type for use in 

AlexNet.  AlexNet was designed for type RGB, 
227x227 pixels.  The radiographs of our M1 Shells 
are greyscale images of size 1745x900.   

(U) Our radiographs come from a production 
facility. Our task is far easier than most computer 
vision problems since the IQI’s are placed in the 
same locations on every radiograph. Since 
AlexNet was designed for images with a very 
specific size, we first cropped each radiograph.  
We chose the region near the subcharge 
arbitrarily and could have chosen any of the IQI 
locations for testing. Consider figure 6 shown 
below.  Our dataset consisted of 150,000 
radiographs of M1 shells. I cropped the region 
near the subcharge, forming a new dataset that 
consisted of only the region directly below the 
supplementary charge. It was given the same 
serial number and was convereted to file type, tiff. 
The program for this is shown in the appendix, 
section 6.1.  There was another preprocessing 
step before using these radiographs as inputs to 
AlexNet. Originally AlexNet was trained on RGB 
images. A simple conversion to RGB was 
necessary, but the images retained their true 
greyescale nature. This code is included in the 
appendix section 6.2 for the interested reader. 

 

 

Figure 6. A Radiograph of an M1 Shell with 3 
IQI’s. 

https://en.wikipedia.org/wiki/Graphics_processing_unit
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(U) AlexNet has a total of 25 layers. All 25 layers, 
with a description of each layer is included in the 
appendix, section 6.4. A few minor changes were 
made to AlexNet in order for it to perform our 
task. The output layer was reprogrammed to 
distinguish between two categories, IQI and no 
IQI. The Implementation of AlexNet is shown in 
the appendix in section 6.5.   

(U) Images were sorted by CCDC Armament 
Center radiographers. All images that contained 
an IQI were put into one folder. The other 
images that did not contain an IQI were placed 
in a different folder. Traditionally, it is 
recommended that 80% of the data is used as 
“training data” and the remaining 20% of data is 
used as a validation set. There were only about 
950 radiographs with an IQI.  It is 
recommended that AlexNet has access to at least 
1000 images of each category in order for the 
algorithm to perform well.  Therefore, I 
conformed to the traditional guidlines of 80/20 
split. More data would be needed to futher train 
and validate the algorithm.  

3. (U) Results and Discussion 

(U) AlexNet was extremely successful in 
determining which radiographs contained an IQI. 
We describe some of the performance statistics 
below.  

Training took approximately one hour to achieve.  

1918 iterations were performed. The statistics of 
these iterations are included in the appendix, 
section 6.5, for the reader.  

An accuracy of 99.58% was achieved on the 
validation set. More testing and data would be 
required to further validate the algorithm. 

A high degree of accuracy was achieved in a 
relatively short amount of time. In figure 7, a plot 
of accuracy  versus iteration number is shown. 
(next page)  

You can also see a graph of the loss function, 
representing the error in predicition as a function 
of iteration number in figure 8. (next page)   

Using a combination of classical ADR and 
machine learning techniques, image audits can be 
done quickly and more easily. This allows for 
radiographers and project managers to become 
aware of critical problems sooner.  

(U) When performing an audit, there are a few 
critical metrics that can now be gathered 
relatively quickly using machine learning and 
classical ADR.  This helps radiographers at CCDC 
Armaments Center focus on critical issues 
sooner.  

(U) Image Quality is the first line of defense. If 
image quality fails, the audit stops, and an 
investigation must be conducted to understand 
why image quality has not been met. Military 
specifications often dictate a placement 
frequency of IQI’s on a radiograph.  The 
algorithm in this paper can check IQI frequency 
quickly with high accuracy. After IQI placement 
frequency has been verified, a measurement of 
the Signal to Noise ratio (SNR), can be made. We 
refer the reader to our previous work to see how 
this can be automated. [6] 

(U) A combination of machine learning and 
classical ADR can then check to see if the 
remainder of IQI requirements have been 
satisfied.  

(U) Finally, a classical ADR algorithm can be run 
to check for gross anomalies in the dataset. We 
refer the reader to the following paper for a 
description and performance of such an 
algoirthm.  [7] 

4. (U) Conclusion 

(U) Machine learning has been very successful in 
recent years. Research from Google AI has shown 
that machine learning algorithms can detect 
breast cancer more reliably than doctors in many 
scenarios. [8] 

(U) As machine learning becomes more 
prevalent, there will be many benefits for use at 
CCDC Armaments Center. machine learning via 
convolutional neural networks can and will aid 
radiographers across the industrial base ensuring 
the highest quality munitions are delivered to the 
warfighter.  

(U) It is my hope that this paper outlines a 
pipeline for future research and deployment of 
machine learning algorithms across CCDC 
armaments center.   
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Figure 7. Training progress of AlexNet to detect IQI’s in a radiograph. Accuracy is plotted against 
iteration. The darker line represents the smoothed version.  Convergence was very fast.   

  

 

Figure 8. Training progress of AlexNet to detect IQI’s in a radiograph. The darker line represents the 
smoothed verison.   

6. (U) Appendix 

(U) 6.1 Cropping Procedure for M1 Shells  

cd 'D:\MCAAP M1 Recap\' 

  
I = dir('D:\MCAAP M1 Recap\*.dcm'); 

  
nfiles = length(I); 

  
for i = 1:nfiles 

         
        filename = strcat('D:\MCAAP M1 Recap\', I(i).name); 

     
        X = dicomread(I(i).name); %Read image and store as Matrix X 

         
        %1.5 IQI 
        %Submatrix Window 
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        ymin = 480; %Starting row 
        ymax = 706; %Ending row 
        xmin = 230; %Starting Column 
        xmax = 456; %Ending Column 
        W = X(ymin:ymax,xmin:xmax); 

         
        name = strcat('C:\Users\walter.s.rose5\Documents\Images\M1 

TrainingData\', I(i).name); 
        imwrite(W, [name,'.tif']); 

             
end 

6.2 Converson of Greyscale to RGB 

cd 'C:\Users\walter.s.rose5\Documents\Images\M1 TrainingData\' 

  
I = dir('C:\Users\walter.s.rose5\Documents\Images\M1 TrainingData\*.tif'); 

  
nfiles = length(I); 

  
for i = 1:nfiles 

     
        filename = strcat('C:\Users\walter.s.rose5\Documents\Images\M1 

TrainingData\', I(i).name); 

     
        X = imread(I(i).name); %Read image and store as Matrix X 

        
        Y = repmat(X,1,1,3); 

         
        name = strcat('C:\Users\walter.s.rose5\Documents\Images\M1 

TrainingData\Test\', I(i).name); 
        imwrite(Y, [name,'.tif']);  
end 

  

  

 

6.3 AlexNet Run Program 

cd 'C:\Users\walter.s.rose5\Documents\Images\' 

  
allImages = imageDatastore('M1 TrainingData', 'IncludeSubfolders', true, 

'LabelSource', 'foldernames'); 

  
[trainingImages, testImages] = splitEachLabel(allImages, 0.8, 'randomize'); 

  
%load a pre-trained deep convolutional neural network 
Net = alexnet; 
layers = Net.Layers; 
layers(23) = fullyConnectedLayer(2); 
layers(25) = classificationLayer 

  
options = trainingOptions('sgdm', 'InitialLearnRate', 0.01, 'MaxEpochs', 1, 

'MiniBatchSize', 64, 'Plots', 'training-progress'); 
myNet = trainNetwork(trainingImages, layers, options); 
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predictedLabels = classify(myNet, testImages); 
accuracy = mean(predictedLabels == testImages.Labels); 

 

6.4 Internal Structure of AlexNet for IQI Detection 

  

 25x1 Layer array with layers: 

 

     1   'data'    Image Input                                   227x227x3 images with 'zerocenter' normalization 

     2   'conv1'   Convolution                                96 11x11x3 convolutions with stride [4  4] and padding [0  0  0  0] 

     3   'relu1'   ReLU                                            ReLU 

     4   'norm1'   Cross Channel Normalization   cross channel normalization with 5 channels per element 

     5   'pool1'   Max Pooling                                3x3 max pooling with stride [2  2] and padding [0  0  0  0] 

     6   'conv2'   Convolution                                256 5x5x48 convolutions with stride [1  1] and padding [2  2  2  2] 

     7   'relu2'   ReLU                                            ReLU 

     8   'norm2'   Cross Channel Normalization   cross channel normalization with 5 channels per element 

     9   'pool2'   Max Pooling                               3x3 max pooling with stride [2  2] and padding [0  0  0  0] 

    10   'conv3'   Convolution                              384 3x3x256 convolutions with stride [1  1] and padding [1  1  1  1] 

    11   'relu3'   ReLU                                         ReLU 

    12   'conv4'   Convolution                             384 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1] 

    13   'relu4'   ReLU                                         ReLU 

    14   'conv5'   Convolution                            256 3x3x192 convolutions with stride [1  1] and padding [1  1  1  1] 

    15   'relu5'   ReLU                                        ReLU 

    16   'pool5'   Max Pooling                            3x3 max pooling with stride [2  2] and padding [0  0  0  0] 

    17   'fc6'     Fully Connected                        4096 fully connected layer 

    18   'relu6'   ReLU                                        ReLU 

    19   'drop6'   Dropout                                   50% dropout 

    20   'fc7'     Fully Connected                        4096 fully connected layer 

    21   'relu7'   ReLU                                       ReLU 

    22   'drop7'   Dropout                                  50% dropout 

    23   ''        Fully Connected                         2 fully connected layer 

    24   'prob'    Softmax                                   softmax 

    25   ''        Classification Output                 crossentropyex 
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6.5 RunTime Statistics for AlexNet M1 IQI Detection 
|  Epoch  |  Iteration  |  Time Elapsed  |  Mini-batch  |  Mini-batch  |  Base Learning  | 

|         |             |   (hh:mm:ss)   |   Accuracy   |     Loss     |      Rate       

||=======================================================================

=================| 

|       1 |           1 |       00:00:05 |       84.38% |       0.4085 |          0.0100 | 

|       1 |          50 |       00:01:44 |       98.44% |       0.0944 |          0.0100 | 

|       1 |         100 |       00:03:23 |      100.00% |       0.0108 |          0.0100 | 

|       1 |         150 |       00:05:02 |      100.00% |       0.0035 |          0.0100 | 

|       1 |         200 |       00:06:41 |       98.44% |       0.0441 |          0.0100 | 

|       1 |         250 |       00:08:20 |      100.00% |       0.0070 |          0.0100 | 

|       1 |         300 |       00:10:01 |      100.00% |       0.0013 |          0.0100 | 

|       1 |         350 |       00:11:40 |      100.00% |       0.0011 |          0.0100 | 

|       1 |         400 |       00:13:20 |       98.44% |       0.1150 |          0.0100 | 

|       1 |         450 |       00:15:01 |       96.88% |       0.1273 |          0.0100 | 

|       1 |         500 |       00:16:41 |       98.44% |       0.1412 |          0.0100 | 

|       1 |         550 |       00:18:21 |      100.00% |       0.0092 |          0.0100 | 

|       1 |         600 |       00:20:01 |      100.00% |       0.0030 |          0.0100 | 

|       1 |         650 |       00:21:42 |      100.00% |       0.0163 |          0.0100 | 

|       1 |         700 |       00:23:22 |      100.00% |       0.0044 |          0.0100 | 

|       1 |         750 |       00:25:02 |       96.88% |       0.1277 |          0.0100 | 

|       1 |         800 |       00:26:42 |      100.00% |       0.0013 |          0.0100 | 

|       1 |         850 |       00:28:22 |      100.00% |       0.0037 |          0.0100 | 

|       1 |         900 |       00:30:02 |      100.00% |       0.0086 |          0.0100 | 

|       1 |         950 |       00:31:42 |       98.44% |       0.1051 |          0.0100 | 

|       1 |        1000 |       00:33:22 |       98.44% |       0.0699 |          0.0100 | 

|       1 |        1050 |       00:35:02 |      100.00% |       0.0023 |          0.0100 | 

|       1 |        1100 |       00:36:41 |      100.00% |       0.0057 |          0.0100 | 

|       1 |        1150 |       00:38:21 |      100.00% |       0.0017 |          0.0100 | 

|       1 |        1200 |       00:40:01 |      100.00% |       0.0023 |          0.0100 | 

|       1 |        1250 |       00:41:40 |      100.00% |       0.0008 |          0.0100 | 

|       1 |        1300 |       00:43:20 |      100.00% |       0.0015 |          0.0100 | 

|       1 |        1350 |       00:45:01 |      100.00% |       0.0043 |          0.0100 | 

|       1 |        1400 |       00:46:41 |      100.00% |       0.0015 |          0.0100 | 

|       1 |        1450 |       00:48:21 |      100.00% |       0.0036 |          0.0100 | 

|       1 |        1500 |       00:50:01 |      100.00% |       0.0051 |          0.0100 | 

|       1 |        1550 |       00:51:41 |      100.00% |       0.0011 |          0.0100 | 
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|       1 |        1600 |       00:53:21 |       98.44% |       0.0964 |          0.0100 | 

|       1 |        1650 |       00:55:01 |      100.00% |       0.0023 |          0.0100 | 

|       1 |        1700 |       00:56:41 |      100.00% |       0.0020 |          0.0100 | 

|       1 |        1750 |       00:58:21 |      100.00% |       0.0023 |          0.0100 | 

|       1 |        1800 |       01:00:01 |       98.44% |       0.0928 |          0.0100 | 

|       1 |        1850 |       01:01:41 |      100.00% |       0.0159 |          0.0100 | 

|       1 |        1900 |       01:03:21 |      100.00% |       0.0009 |          0.0100 | 

|       1 |        1918 |       01:03:57 |      100.00% |       0.0066 |          0.0100 | 

|========================================================================

================| 
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